

DATA for GOOD’s digital
collaboration structure -

Technical documentation

1 - Getting started​ 3
1.1 - About Data for Good​ 3
1.2 - The Crane project​ 3
1.3 - The different components of the ecosystem​ 3
1.4 - Requirements to join the ecosystem​ 5

2 - Technical architecture​ 6
2.1 - Core layers of the architecture​ 6
2.2 - MitID version​ 8

3 - Integration​ 8
3.1 - Level 1: Sending a copy of the consents to the blockchain​ 9
3.2 - Level 2: Allowing users to store their own consent via SSO / Oauth​ 9

3.2.1. Oauth2 (connecting accounts)​ 9
3.2.2. SSO​ 9

3.3 - Level 3: Moving data between services​ 9
4 - Performing a privacy-preserving analysis​ 11

1 - Getting started

1.1 - About DATA for GOOD
DATA for GOOD (DfG) is a not-for-profit organisation working to build trust in the data
economy by promoting strong governance, privacy, and secure data management. In close
collaboration with its main technology partner, Partisia, DfG uses cutting-edge blockchain
and Multiparty Computation (MPC) technologies to deliver the infrastructure and
governance needed for the ethical and secure use of data across sectors - with personal

GDPR regulated data as a key focus, but with bigger ambitions.

1.2 - The Crane project
The Crane Project is a European-funded initiative aiming to revolutionize personal health data
management through the creation of a secure, interoperable digital health ecosystem. Crane
empowers citizens by enabling secure, consent-based control of their health information,
fostering enhanced trust, privacy, and innovation in data-driven healthcare services.

1.3 - The different components of the digital collaboration structure
The DfG digital collaboration structure comprises several interconnected stakeholders and
components that together enable secure, consent-driven management of personal GDPR

regulated data.

●​ DfG Personal
This component provides citizens with control over their personal GDPR regulated data

through a secure digital Personal Data Space (‘wallet’). It enables connection to external data
sources, consent management, and includes a Personal Data Space (PDS) for safe data
storage and management.

●​ DfG Professional platform
This component includes dashboards specifically designed for professionals and service

providers to efficiently manage user consents and a confidential computing platform that
leverages Multiparty Computation (MPC). The consent dashboard is designed to ensure the
privacy and security of citizen data, while the confidential computing platform can be utilized
by companies, organizations, and individual analysts for performing secure,
privacy-preserving data analyses.

●​ Service and Data Providers for Citizens

https://dataforgoodfoundation.org/
https://www.partisia.com/
https://crane-pcp.eu/

These are services that are integrated within the digital collaboration structure. Service
providers provide transparency for users by storing consents in the blockchain-based ledger,
leverage our SSO or Oauth2.0 for giving users ownership of their data without the need for
multiple accounts, plus are enabled to share and fetch data from other service providers in
the ecosystem, as well as directly through the data sources integrated with DfG Personal.

As of today, DfG has two main partners in this category: Meteda (based in Italy) and
Cardiolyse (based in Finland).

Figure 1. The DfG digital collaboration structure at a glance

https://www.meteda.it/en/
https://cardiolyse.com/

●​ Service Providers for HealthCare Professionals (HCPs)
These include dedicated platforms and tools designed for healthcare professionals to
optimize chronic disease management, clinical decision-making, and patient monitoring,
enhancing overall patient care through comprehensive data integration and analytics.

As of today, DfG has two main partners in this category: Enversion (based in Denmark) and
Meteda (based in Italy).

1.4 - Requirements to join the digital collaboration structure
Integrating with the DfG digital collaboration structure comes with different requirements
depending on the level of integration a collaborating partner is aiming for. We currently offer
three different integration levels:

●​ Level 1: Send consent records to the blockchain to provide transparency for the users
of the specific Service.

●​ Level 2: Allow users to manage and store their own consents using SSO/OAuth,
effectively putting them in control of their data.

●​ Level 3: Enable data transfer between services (full service provider integration) for
enhancing the experience of users.

Regardless of integration level, general technical requirements include:

●​ A backend capable of interacting with the blockchain-based consent APIs.
●​ The ability to send blockchain transactions (no gas fees required). If your team doesn’t

have prior blockchain experience, our team will gladly support you through your first
blockchain experience.

●​ Ideally, compliance with OAuth2 standards for user identity and consent management.

2 - Technical architecture

2.1 - Core layers of the architecture
The DfG digital collaboration structure is built on a layered architecture designed to ensure
security, interoperability, privacy, and scalability. This structure supports consent-driven data
management, secure multi-party computation, and ease of integration across stakeholders.
Below is a high-level overview of the key layers:

https://www.enversion.com/en/
https://www.meteda.it/en/
https://docs.partisia.com/consent/consent.html
https://docs.partisia.com/consent/how-to-build-a-transaction.html
https://datatracker.ietf.org/doc/html/rfc6749

Figure 2. DfG’s digital collaboration structure technical architecture

●​ Physical node deployment and computational layer:

This foundational layer includes physical servers (nodes) spread across providers, along with
the MPC cluster for privacy-preserving analysis. These nodes manage encryption, data
processing, and secure calculations without storing sensitive data centrally.

●​ Blockchain and smart contract layer:

Built on Partisia’s blockchain technology, this layer works as a consent storage and auditing
layer. Smart contracts enforce rules for consent creation, revocation, and verification. All
consent transactions are recorded immutably on the blockchain, providing transparency and
tamper-proof logs.

●​ Blockchain-based consent API layer:

This API serves as the interface for managing consents. It allows service providers to interact
with the blockchain for storing, retrieving, and auditing consents. The API supports
operations like consent submission and checks, ensuring compliance with GDPR and user
control.

●​ Data integration layer:

This layer facilitates the standardisation of data between services and external data sources.
For example in the health industry, we’re relying on our partner Enversion to provide the
Journl Stream solution, which orchestrates the process of converting health data into
standardised FHIR data. You can read more about the specifics of the integration layer here.

●​ Application layer:

This top layer includes tools provided by the DfG digital collaboration structure: the consent
dashboards and the Confidential Computing platform (for professionals), the Virtual Data
Lake (for data exchange and privacy-preserving analytics), and end-user apps like DfG
Personal (for citizens) and DfG Professional platform (for HCPs and analysts).

For more details, refer to our documentation on consent APIs (e.g.,
https://docs.partisia.com/consent/consent.html).

2.2 - MitID version
In regions like Denmark, a specialized version integrates with MitID (national digital ID) for
authentication. This adds an extra layer of trust by leveraging government-backed identity
verification. It includes tailored consent mechanisms but maintains the same core layers,
ensuring compatibility with the broader ecosystem.

3 - Integration
Joining the DfG digital collaboration structure lets Service Providers build user trust, enable
easy data sharing, and join a privacy-focused network. Integrations start simple and grow
more advanced.

https://docs.partisia.com/consent/consent.html
https://www.enversion.com/da/
https://www.hl7.org/fhir/overview.html
https://docs.journl.dk/v1/specific-guides-for-externals/meteda-crane-project
https://docs.partisia.com/consent/consent.html
https://www.mitid.dk/en-gb/

Figure 3. The 3 different levels of integration with the DfG digital collaboration structure

3.1 - Level 1: Sending a copy of the consents to the blockchain
This entry-level integration provides transparency by storing consent records on the
blockchain, earning a DfG Compliance Badge. Users do not need to be DfG users - your
service can operate independently.

●​ Steps:
○​ Integrate with the Consent API.
○​ When a user gives consent in your app, send a transaction to store a copy (or

hash) on the blockchain (see
https://docs.partisia.com/consent/how-to-build-a-transaction.html).

●​ Requirements: Basic API access; no user authentication changes needed.
●​ Benefits: Immutable audit log; display DfG badge for trust.

https://docs.partisia.com/consent/how-to-build-a-transaction.html

●​ Example: A well-being app sends consent proofs to demonstrate ethical handling of
data.

3.2 - Level 2: Allowing users to store their own consent via SSO / Oauth
This level puts users in control, allowing them to manage consents directly via DfG Personal.
Users will become DfG users upon connection.

3.2.1. Oauth2 (connecting accounts)

Use OAuth2 to link user accounts between your service and DfG.
●​ Steps: Implement OAuth flow. DfG gets the user's ID for consent syncing.
●​ Requirements: Your backend must handle user ID exchange through OAuth2.
●​ Example: User logs into your app, connects to DfG, and consents are mirrored.

3.2.2. SSO

For seamless authentication, service providers can implement DfG's Single Sign-On (SSO).

●​ Steps: Follow Crane's SSO setup. Users log in once via DfG Personal or your app.
●​ Requirements: Your backend must handle JWT tokens for user data.
●​ Benefits: Simplified user journeys; enables full consent control through DfG’s identity

management.

3.3 - Level 3: Moving data between services
This full integration enables secure data sharing across the digital collaboration structure
(e.g., from your own service from/to any other service in the collaboration structure), using the
integration layer for standardisation of data and relying on the blockchain-based ledger for
ethical handling of data.

●​ Steps: Check consents via API endpoints. Use the standardisation layer to ensure data
is interoperable between services. Data flows to/from Virtual Data Lake to services if
consented.

●​ Requirements: A backend for performing consent checks and data export.
●​ Benefits: Enhanced interoperability between services; additional features can be built.
●​ Example: Share your Fitbit data with your Healthcare provider.

https://docs.partisia.com/consent/sso.html

4 - Performing a privacy-preserving analysis
The DfG digital collaboration structure provides an Analytics-as-a-Service tool called the
Confidential Computing platform - which uses a powerful encryption method named
Multiparty Computation (MPC) to combine sensitive datasets in a privacy-preserving
manner.

Figure 4. The Confidential Computing platform

Organizations, universities, companies, and individuals can securely analyze aggregated data
sets without exposing sensitive individual data, thus, extracting insights from sensitive data
while keeping it safe and private. The full documentation for the Confidential Computing
product can be found here.

To perform privacy-preserving analyses, the following steps are necessary:

1)​ Analysts request consent through the consent dashboard, clearly defining data types

and intended analysis.
2)​ Citizens receive consent requests via their DfG Personal application, where they can

review and approve or decline consent.
3)​ Upon consent approval, analysts securely combine data from various sources by

leveraging Multi-Party Computation and can query on the different datasets.

https://docs.partisia.com/confidential-computing/what-is-confidential-computing.html
https://docs.partisia.com/confidential-computing/analyst/combining-data.html

None

None

The available datasets come from a variety of Service Providers, such as Meteda and
Cardiolyse and data sources, such as Fitbit, and include health metrics (e.g., blood pressure,
ECG readings, heart rate variability), activity data from wearables, and more.

If you’re interested in having access to the Confidential Computing platform, you can reach
out at info@dfgfoundation.org.

4.1 - Multi-Party Computation (MPC) API
The following GraphQL code snippets describe the fields that service providers must fill in to
build their own frontend for the Confidential Computing Platform.

GraphQL is a query language for APIs and a runtime that lets clients ask for exactly the data
they need - nothing more, nothing less. Instead of many REST endpoints, a GraphQL API
exposes a single endpoint backed by a strongly-typed schema.

type Query {
 analysis(id: ID!, orgId: Int): Analysis! # (Shared coordinator and node)
 analyses(analysisFilter: AnalysisFilter!): AnalysesConnection! # (Shared
coordinator and node)
 dataView(id: ID! orgId: Int): DataView!
 datasource(id: ID!): Datasource!
 catalog(id: ID!): Catalog!
 datasources(input: CatalogsAndDatasourcesQueryInput): [Datasource!]!
 catalogs(input: CatalogsAndDatasourcesQueryInput): [Catalog!]!
 binder(analysisId: ID!): Binder
 result(analysisId: ID! orgId: Int signedRequests: [[String!]!]! taskIds:
[Int!]!): Analysis!
 node(id: ID!, orgId: Int): Node # (Shared in coordinator and node)
}

type Mutation {
 # Coordinator:
 createCatalog(signedTransaction: String!): Catalog!
 createDatasource(signedTransaction: String!): Datasource!

mailto:info@dfgfoundation.org

None

 createVariable(signedTransaction: String!): Variable!
 updateCatalog(signedTransaction: String!): Catalog!
 updateDatasource(signedTransaction: String!): Datasource!
 updateVariable(signedTransaction: String!): Variable!
 createDataView(signedTransaction: String!): DataView!
 createAnalysis(signedTransaction: String!): Analysis!
 updateAnalysis(id: ID! signedTransaction: String!): Analysis!
 deleteAnalysis(signedTransaction: String!): Boolean!
 updateMergeSpecification(id: ID!, signedTransaction: String!): Analysis!
 createCalculation(signedTransaction: String!): Calculation!
 updateCalculation(id: ID! signedTransaction: String!): Calculation!
 duplicateCalculation(id: ID! signedTransaction: String!): Calculation!
 deleteCalculation(signedTransaction: String!): Boolean!
 addCatalog(analysisId: ID! signedTransaction: String!): Analysis!
 removeCatalog(analysisId: ID! signedTransaction: String!): Analysis!
 addDatasource(analysisId: ID! signedTransaction: String!): Analysis!
 removeDatasource(analysisId: ID! signedTransaction: String!): Analysis!
 sendDataView(signedTransaction: String!): DataView!
 sendAnalysis(signedTransaction: String!): Analysis!
 duplicateDataView(signedTransaction: String!): DataView!
 duplicateAnalysis(signedTransaction: String!): Analysis!
 queueAnalysisForComputation(signedTransaction: String!): Analysis!

 # CC Nodes:
 approveAnalysis(orgId: Int! signedTransaction: String!): Analysis!
 approveResults(orgId: Int! signedTransaction: String!): Analysis!
 requestResultAccess(signedAccess: String!): Binder!
}

type Analysis implements Node {

 id: ID! @globalId

 name: String # Shared

 note: String # Shared

 analysts: [String!]!

 calculations: [Calculation!]! # Shared

 catalogs: [Catalog!]! # Shared

 datasources: [Datasource!]! # Shared

 approvals: [OrganizationApproval!]

 status: AnalysisStatus!

 locked: Boolean!

 results: [ResultsDto!]

 modulus: String! # Shared

 fixedPointPrecision: Int! # Shared

 dataViewId: Int!

 # From Nodes (not coordinator)

 createTs: TIME!

 modifyTs: TIME!

 analystName: String

 analystEmail: String!

 approvalState: ApprovalState!

 resultsApprovalState: ResultsApprovalState!

 stateStatus: AnalysisStateStatus!

 ownDataTs: TIME

 otherDataTs: TIME

 processed: Boolean!

 confidentialDataset: String

 finishedTasks: [Int!]

 offChainAuthorities: [String!]

 datasetDefinitions: [DatasetDefinition!]!

 trusted: Boolean

 mergeSpec: String!

}

Additional documentation of the Confidential Computing platform can be found here.

https://docs.partisia.com/confidential-computing/what-is-confidential-computing.html

	
	
	
	
	
	DATA for GOOD’s digital collaboration structure -
	Technical documentation
	
	1 - Getting started
	1.1 - About DATA for GOOD
	1.2 - The Crane project
	1.3 - The different components of the digital collaboration structure
	1.4 - Requirements to join the digital collaboration structure

	2 - Technical architecture
	2.1 - Core layers of the architecture
	2.2 - MitID version

	3 - Integration
	3.1 - Level 1: Sending a copy of the consents to the blockchain
	3.2 - Level 2: Allowing users to store their own consent via SSO / Oauth
	3.2.1. Oauth2 (connecting accounts)
	3.2.2. SSO

	3.3 - Level 3: Moving data between services

	4 - Performing a privacy-preserving analysis
	4.1 - Multi-Party Computation (MPC) API

